English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2015-Jul

Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M C Leroy
M Legras
S Marcotte
V Moncond'huy
N Machour
F Le Derf
F Portet-Koltalo

Keywords

Abstract

Biofilters have been implemented in urban areas due to their ability to improve road runoff quality. However, little is known about the role of soil microorganisms and plants on pollutant remediation in planted swales. Therefore, four large-scale outdoor mesocosms were built and co-contaminated with metals and model polycyclic aromatic hydrocarbons (PAHs) (phenanthrene (Phen), pyrene (Pyr) and benzo[a]pyrene (BaP)), to better understand the complex functioning of swale-like environments. Three macrophyte plant species were tested for enhanced remediation of PAHs: Juncus effusus, Iris pseudacorus, Phalaris arundinacea and a grass mix. Long-term dynamics of PAHs in water outflow and soil was studied. Results showed that only 0.07 to 0.22% of total PAHs were released in water outflow after one year. Two years after contamination, soil sample analyses showed a dissipation of 99.6% for Phen and 99.4% for Pyr whatever the mesocosm considered and ranging from 75.5 to 91% for BaP, depending on plant species. Furthermore, dissipation time-courses may be described by a biphasic process. Experiments showed that the grass mix facilitated BaP long-term biodegradation. Grass appeared also to be the best filter for suspended solids because of its dense rhizosphere, which prevents the transfer of BaP to groundwater.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge