English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Pharmacology 1990-Jul

Atropine-resistant relaxation induced by high K+ in iris dilator muscle of the rat and pig.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Ryang
S Takei
T Kawai
Y Imaizumi
M Watanabe

Keywords

Abstract

1. The effects of high K+ ion concentration on the isometric tension in dilator muscle strips of the rat and porcine iris were examined. A high K+ solution, prepared by the replacement of Na+ in the medium with equimolar K+, was applied in the presence of 1 microM phentolamine, 1 microM propranolol and 1 or 10 microM atropine. High K+ (greater than 20 mM) induced a biphasic response; an initial phasic contraction followed by relaxation rather than tonic contraction. 2. An additional application of a Ca2+ antagonist, 1 microM nifedipine or nicardipine, almost completely blocked the K(+)-induced initial contraction and enhanced the following relaxation. The effect of K+ under these conditions was concentration-dependent in the range 20 to 80 mM. The maximum amplitude of the atropine-resistant relaxation induced by high K+ corresponds to 50-75% of that produced by acetylcholine in the absence of atropine. A similar K(+)-induced relaxation was observed in the porcine iris dilator. 3. The atropine-resistant relaxation in the rat iris dilator was not affected by pretreatment with 10 microM ouabain. The relaxation induced by 40 or 80 mM K+ in the porcine dilator was slightly enhanced or not affected, respectively, in the presence of 1 microM ouabain. Application of 10 microM ouabain per se induced relaxation in the porcine iris dilator. 4. The low Na+ ion concentration present in high K+ solutions was not responsible for the K(+)-induced relaxation since the complete replacement of Na in the medium with Tris did not affect significantly the relaxation produced by high K(+)-containing solutions. 5. Neither 1 microM tetrodotoxin, 10 microM indomethacin, 10 JM nordihydroguaiaretic acid nor hypoxic conditions affected the high K+-induced relaxation. 6. The inherent tone of the rat iris dilator was not affected by either 8-bromo cyclic GMP, dibutyryl cyclic GMP (0.1-0.3 mM) or nitroprusside (1-100 microM). 7. These results may suggest that the atropine-resistant relaxation induced by high K+ is not due to either activation of the Na-K pump or release of a relaxing factor produced by oxidative metabolism. Although the relaxation mechanism has not been elucidated, it is probably not mediated by an increase in cellular cyclic GMP levels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge