English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Pharmaceutical Design 2004

B cell responses to oxidative stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yumi Tohyama
Tomoko Takano
Hirohei Yamamura

Keywords

Abstract

B-lymphocytes are exposed to a reduction/oxidation environment during activation or inflammatory process, and the antioxidant systems are functional to protect themselves against harmful reactive oxygen species (ROS). The crucial roles of thioredoxin-2 (Trx-2) and a DNA repair enzyme APE/Ref-1 in mitochondria are reported in B-lymphocytes. Furthermore, ROS stimulate different signaling pathways in many cellular responses. Their effects often cause some diseases or are utilized for the treatment of other diseases. For example, the cells derived from Fanconi anemia (FA) patients are intolerant of oxidative stress and the therapeutic effect of anti-CD20 monoclonal antibody rituximab on B cell lymphoproliferative disorders is due to the generation of ROS. To clarify the oxidative stress-induced signaling pathways, we stimulated a B cell line with various concentrations of H(2)O(2). As a result, a protein tyrosine kinase, Syk was involved in the induction of G2/M arrest and protection of cells from apoptosis. Syk might inhibit the activation of caspase-9 through Akt thereby protecting cells from oxidative stress-induced apoptosis. On the other hand, Syk-dependent PLC-gamma2 activation was required for acceleration towards apoptosis following oxidative stress. These findings suggest that oxidative stress-induced Syk activation triggers the activation of different pathways, such as pro-apoptotic or survival pathways, and that the balance of these pathways is a key factor in determining the fate of the cells exposed to oxidative stress. In contrast, the stimulation with the millimolar concentrations of H(2)O(2) rapidly led to necrosis in which tyrosine phosphorylation of FAK was involved at the downstream of Lyn and Syk.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge