English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Alimentary Pharmacology and Therapeutics 2018-Nov

Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dragos Ciocan
Cosmin Sebastian Voican
Laura Wrzosek
Cindy Hugot
Dominique Rainteau
Lydie Humbert
Anne-Marie Cassard
Gabriel Perlemuter

Keywords

Abstract

BACKGROUND

Intestinal microbiota plays an important role in bile acid homeostasis.

OBJECTIVE

To study the structure of the intestinal microbiota and its function in bile acid homeostasis in alcoholic patients based on the severity of alcoholic liver disease.

METHODS

In this prospective study, we included four groups of active alcoholic patients (N = 108): two noncirrhotic, with (noCir_AH, n = 13) or without alcoholic hepatitis (noCir_noAH, n = 61), and two cirrhotic, with (Cir_sAH, n = 17) or without severe alcoholic hepatitis (Cir_noAH, n = 17). Plasma and faecal bile acid profiles and intestinal microbiota composition were assessed.

RESULTS

Plasma levels of total bile acids (84.6 vs 6.8 μmol/L, P < 0.001) and total ursodeoxycholic acid (1.3 vs 0.3 μmol/L, P = 0.03) were higher in cirrhosis with severe alcoholic hepatitis (Cir_sAH) than Cir_noAH, whereas total faecal (2.4 vs 11.3, P = 0.01) and secondary bile acids (0.7 vs 10.7, P < 0.01) levels were lower. Cir_sAH patients had a different microbiota than Cir_noAH patients: at the phyla level, the abundance of Actinobacteria (9 vs 1%, P = 0.01) was higher and that of Bacteroidetes was lower (25 vs 40%, P = 0.04). Moreover, the microbiota of Cir_sAH patients showed changes in the abundance of genes involved in 15 metabolic pathways, including upregulation of glutathione metabolism, and downregulation of biotin metabolism.

CONCLUSIONS

Patients with Cir_sAH show specific changes of the bile acid pool with a shift towards more hydrophobic and toxic species that may be responsible for the specific microbiota changes. Conversely, the microbiota may also alter the bile acid pool by transforming primary to secondary bile acids, leading to a vicious cycle.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge