Binding of N-acetylgalactosamine-specific lectins to spin-labeled galactosamine derivatives.
Keywords
Abstract
Legume seed lectins specific for N-acetyl-alpha-D-galactosaminyl end groups from Amphicarpaea bracteata, lima bean, Griffonia simplicifolia, Dolichos biflorus, and soybean were compared with respect to binding of several spin-labeled derivatives of D-galactosamine by electron spin resonance and precipitin inhibition analysis. Spin-label II [methyl 2-[[(2,2,5,5-tetramethyl-1-oxopyrrolidin-3-yl) carbonyl]amino]-2-deoxy-alpha-D-galactopyranoside], spin-label III [1-(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)-3-(2,2,6, 6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea], and spin-label IV [1-[4-[[(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)amino]carbonyl]phenyl]-3-(2, 2,6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea] contain 2-N-(oxypiperidinyl) or 2-N-(oxypyrrolidinyl) substituents varying in length and polarity of the linker arm between the glycoside and nitroxide ring. Spin-labels II and III were found to bind very weakly to all the lectins tested (Kd greater than or equal to 1.0 mM). Spin-label IV, containing a planar, nonpolar 2-N-phenyl group, was bound very strongly (Kd = 0.1-0.4 mM) and was moderately immobilized (2T parallel = 48-56 G) by all lectins except that from D. biflorus. Notably, the affinity of spin-label IV to lima bean lectin was 18-fold greater than that for methyl N-acetyl-alpha-galactosaminide. These results suggest that when the bulky oxypiperidinyl moiety lies in a position close to the sugar ring, it interferes with binding; in the cases where a phenyl group spacer exists, the aromatic ring in some cases actually enhances binding.(ABSTRACT TRUNCATED AT 250 WORDS)