English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Genetics and Metabolism 2013-Nov

Biotinidase knockout mice show cellular energy deficit and altered carbon metabolism gene expression similar to that of nutritional biotin deprivation: clues for the pathogenesis in the human inherited disorder.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Hernández-Vázquez
B Wolf
K Pindolia
D Ortega-Cuellar
R Hernández-González
A Heredia-Antúnez
I Ibarra-González
A Velázquez-Arellano

Keywords

Abstract

Biotin is the prosthetic group of carboxylases that have important roles in the metabolism of glucose, fatty acids and amino acids. Biotinidase has a key role in the reutilization of the biotin, catalyzing the hydrolysis of biocytin (ε-N-biotinyl-l-lysine) and biocytin-containing peptides derived from carboxylase turnover, thus contributing substantially to the bioavailability of this vitamin. Deficient activity of biotinidase causes late-onset multiple carboxylase in humans, whose pathogenic mechanisms are poorly understood. Here we show that a knock-out biotinidase-deficient mouse from a C57BL/6 background that was fed a low biotin diet develops severe ATP deficit with activation of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK), inhibition of the signaling protein mTOR, driver of protein synthesis and growth, and affecting the expression of central-carbon metabolism genes. In addition, sensitivity to insulin is augmented. These changes are similar to those observed in nutritionally biotin-starved rats. These findings further our understanding of the pathogenesis of human biotinidase deficiency.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge