English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Kidney Diseases 2000-Mar

Characteristics of albumin processing during renal passage in anti-Thy1 and anti-glomerular basement membrane glomerulonephritis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G A Eppel
K Takazoe
D J Nikolic-Paterson
H Y Lan
R C Atkins
W D Comper

Keywords

Abstract

Recent studies have shown that glomerular-filtered albumin appears to be processed by two distinct cellular pathways. The major pathway, a high-capacity retrieval pathway, returns most of the filtered albumin to the blood supply intact. The albumin not taken up by the retrieval pathway is degraded by lysosomes during renal passage and excreted as fragments in urine. We studied the interplay of the albumin retrieval pathway and the degradation pathway in the disease models of anti-Thy1 nephritis, a model of mild proteinuria, and anti-glomerular basement membrane (anti-GBM) disease, a model of severe proteinuria. This is achieved by investigating the integrity of urinary albumin and its excretion rate. Total albumin excretion (intact plus fragments) did not change significantly in the rats with anti-Thy1 nephritis. However, it was established that intact albumin excretion had a strong positive correlation with increasing total-protein excretion, which showed that the degradation pathway was being predominantly affected in this disease. For the rats with anti-GBM disease, total protein excretion increased 26-fold compared with the control group, and intact albumin excretion increased 250-fold. The profound changes in albumin excretion in anti-GBM disease are consistent with inhibition primarily of the retrieval pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge