English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Die Pharmazie 2013-Jan

Characterization, pharmacokinetics, tissue distribution and antitumor activity of honokiol submicron lipid emulsions in tumor-burdened mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jiaxin Zheng
Yujie Tang
Moran Sun
Yuanyuan Zhao
Qiang Li
Jie Zhou
Yanzhi Wang

Keywords

Abstract

Honokiol, isolated from the Chinese traditional herb magnolia, is a poorly water-soluble component and has been found to have anti-tumor properties. In the current study, honokiol submicron lipid emulsions (HK-SLEs) were prepared by high pressure homogenization technology. After HK-SLEs were physically characterized, their pharmacokinetics, tissue distribution and antitumor activity after intravenous (i.v.) administration to tumor-burdened mice were examined, using honokiol solution (HK-SOL) as the control. The results showed that the mean particle size, zeta potential, pH value, osmolality, drug loading (DL)% and entrapment efficiency (EE)% of HK-SLEs were 186.6 +/- 1.7 nm, -35.65 +/- 0.67 mV, 7.22 +/- 0.26, 298 +/- 2.3 mOsm/L, 7.1 +/- 0.2% and 95.5 +/- 0.2%, respectively. HK-SLEs were stable for at least 12 months when stored at 4 +/- 2 degrees C. The pharmacokinetic results showed that the drug concentration-time curves of HK-SLEs and HK-SOL could both be described by an open two-compartment model. The half-life of HK-SLEs (t1/2(alpha) = 8.014 min, t1/2(beta) = 35.784 min) was remarkably prolonged compared to that of HK-SOL (t1/2(alpha) = 4.318 min, t1/2(beta) = 15.522 min). HK-SLEs exhibited a greater AUC and reduced plasma clearance. The tissue distribution results indicated that HK-SLEs have better targeting properties to lung and tumor tissues compared with those of HK-SOL. Both HK-SLEs and HK-SOL tended to accumulate in brain tissue. In vivo study showed that HK-SLEs treatment caused significant inhibition of mouse sarcoma S180 tumor growth compared to HK-SOL. These results suggest that HK-SLEs might be an effective parenteral carrier for honokiol delivery in cancer treatment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge