English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Veterinary Research 1997-Dec

Comparison of alveolar ventilation, oxygenation, pressure support, and respiratory system resistance in response to noninvasive versus conventional mechanical ventilation in foals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A M Hoffman
R L Kupcinskas
M R Paradis

Keywords

Abstract

OBJECTIVE

To compare the efficacy of positive pressure ventilation applied through a mask versus an endotracheal tube, using anesthetized/paralyzed foals as a model for foals with hypoventilation.

METHODS

Six 1-month-old foals.

METHODS

A crossover design was used to compare the physiologic response of foals to 2 ventilatory techniques, noninvasive mask mechanical ventilation (NIMV) versus endotracheal mechanical ventilation (ETMV), during a single period of anesthesia and paralysis. Arterial pH, PaO2, PaCO2, oxygen saturation, end-tidal CO2 tension, airway pressures, total respiratory system resistance, resistance across the upper airways (proximal to the midtracheal region), and positive end-expiratory pressures (PEEP) were measured. Only tidal volume (VT; 10, 12.5, and 15 ml/kg of body weight) or PEEP (7 cm of H2O) varied.

RESULTS

Compared with ETMV, use of NIMV at equivalent VT resulted in PaCO2 and pH values that were significantly higher, but PaO2 was only slightly lower. Between the 2 methods, peak airway pressure was similar, but peak expiratory flow was significantly lower and total respiratory resistance higher at each VT for NIMV. Delivery of PEEP (7 cm of H2O) was slightly better for ETMV (7.1 +/- 1.3 cm of H2O) than for NIMV (5.6 +/- 0.6 cm of H2O).

CONCLUSIONS

These data suggest that use of NIMV induces similar physiologic effects as ETMV, but the nasal cavities and mask contribute greater dead space, manifesting in hypercapnia. Increasing the VT used on a per kilogram of body weight basis, or the use of pressure-cycled ventilation might reduce hypercapnia during NIMV.

CONCLUSIONS

Use of NIMV might be applicable in selected foals, such as those with hypoventilation and minimal changes in lung compliance, during weaning from endotracheal mechanical ventilation, or for short-term ventilation in weak foals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge