English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncotarget 2017-Dec

Coronarin D induces reactive oxygen species-mediated cell death in human nasopharyngeal cancer cells through inhibition of p38 MAPK and activation of JNK.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jui-Chieh Chen
Ming-Chang Hsieh
Shu-Hui Lin
Chia-Chieh Lin
Yi-Ting Hsi
Yu-Sheng Lo
Yi-Ching Chuang
Ming-Ju Hsieh
Mu-Kuan Chen

Keywords

Abstract

UNASSIGNED

Nasopharyngeal carcinoma (NPC) belongs to squamous cell carcinoma that occurs in the epithelial lining of the nasopharynx. Because of the anatomical position close to the cervical lymph node, some patients have a distant metastasis at the time of diagnosis that leads to treatment failure. Although early stages have a high curability and excellent prognosis, advanced NPC urgently requires new drugs developed to reinforce the effectiveness of therapy without noticeable side effects.

UNASSIGNED

Coronarin D (CD), a natural product extracted from the rhizomes of Hedychium coronarium, has been reported to possess anticancer potential. The aim of the present study was to determine the anticancer activity of CD and further elucidate the underlying molecular mechanisms.

UNASSIGNED

In this study, we first demonstrated that CD potently suppressed cell viability in various NPC cell lines. Treatment of cells with CD induced G2/M arrest, apoptosis, and autophagy. Further studies showed that CD increased the production of reactive oxygen species and subsequently activated both autophagy and apoptosis. Moreover, we found that CD-induced activation of p38 and JNK constituted major mechanisms involved in the apoptosis and autophagy triggered by CD. In particular, inhibition of autophagy could strengthen the cytotoxicity of CD, implying that autophagy seems to play a valuable survival and protective role in cancer cells.

UNASSIGNED

These findings provide a promise for the use of CD in combination with autophagy inhibitors for treatment of human NPC cell lines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge