English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2013-May

Cyclophilin D modulates cell death transition from early apoptosis to programmed necrosis induced by honokiol.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei Tian
Dong Xu
Weidong Han
Haifei He
Hongke Cai
Hailong Chen
Meiqi Zhou
Jiani Chen
Yong-Chuan Deng

Keywords

Abstract

Honokiol is a pharmacologically active small molecule with multifunctional antitumor effects. Although plenty of literature is available on honokiol-triggered apoptosis and programmed necrosis, few studies have investigated the potential existence of death mode transition from apoptosis to programmed necrosis. In the current study, we demonstrated that the necrotic cell population (PI-positive) gradually increased and the early-stage apoptotic cell population (PI-negative and AV-positive) decreased in a dose- and time-dependent manner following honokiol treatment. Furthermore, we demonstrated that these PI-positive cells were under necrotic cell death, since no late-apoptosis characteristics including conspicuous chromatin condensation or DNA ladder patterns were detected. These results demonstrated that cells suffered death mode transition from early-stage apoptosis to programmed necrosis with the increase of honokiol dose or treatment time. The protein expression of RIP3 markedly increased in parallel with HNK-triggered death mode transition, while the expression of RIP1 decreased. Cyclophilin D expression increased during cell death mode transition, and inhibition of cyclophilin D by cyclosporin A clearly blocked HNK-triggered programmed necrosis. These data indicated that honokiol-induced programmed necrosis and death mode transition are potentially RIP3‑dependent, cyclophilin D-regulated. Further results showed that blocked cyclophilin D by cyclosporin A inhibited HNK-induced necrosis, but did not affect HNK-induced RIP3 overexpression. This indicated that cyclophilin D was a potential modulator at downstream of RIP3. In conclusion, honokiol triggers a potential RIP3-dependent cell death mode transition from early-stage apoptosis to programmed necrosis, which is highly regulated by cyclophilin D.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge