English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virology 1999-Sep

DNA contacts by protein domains of the molluscum contagiosum virus type-1B topoisomerase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Y Hwang
M Park
W H Fischer
A Burgin
F Bushman

Keywords

Abstract

All poxviruses studied encode a type 1B topoisomerase that introduces transient nicks into DNA and thereby relaxes DNA supercoils. Here we present a study of the protein domains of the topoisomerase of the poxvirus molluscum contagiosum (MCV), which allows us to specify DNA contacts made by different domains. Partial proteolysis of the enzyme revealed two stable domains separated by a protease-sensitive linker. A fragment encoding the linker and carboxyl-terminal domain (residues 82-323) was overexpressed in Escherichia coli and purified. MCV topoisomerase (MCV-TOP)(82-323) could relax supercoiled plasmids in vitro, albeit with a slower rate than the wild-type enzyme. MCV-TOP(82-323) was sensitive to sequences in the favored 5'-(T/C)CCTT-3' recognition site and also flanking DNA, indicating that some of the sequence-specific contacts are made by residues 82-323. Assays of initial binding and covalent catalysis by MCV-TOP(82-323) identified the contacts flanking the 5'-CCCTT-3' sequence at +10, +9, -2, and -3 to be important. Tests with substrates containing a 5-bridging phosphorothiolate that trap the cleaved complex revealed that correct contacts to the flanking sequences were important in the initial cleavage step. MCV-TOP(82-323) differed from the full-length protein in showing reduced sensitivity to mutations at a position within the 5'-(T/C)CCTT-3' recognition site, consistent with a model in which the amino-terminal domain contacts this region. These findings provide insight into the division of labor within the MCV-TOP enzyme.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge