English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1977-Apr

Differential effect of irradiance and nutrient nitrate on the relationship of in vivo and in vitro nitrate reductase assay in chlorophyllous tissues.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R W Jones
R W Sheard

Keywords

Abstract

Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge