English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pediatric Research 2001-Jun

Effect of extreme hypercapnia on hypoxic-ischemic brain damage in the immature rat.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R C Vannucci
J Towfighi
R M Brucklacher
S J Vannucci

Keywords

Abstract

To ascertain the effect of extreme hypercapnia on perinatal hypoxic-ischemic brain damage, 7-d-postnatal rats were exposed to unilateral common carotid artery occlusion followed by hypoxia with 8% oxygen combined with 3, 12, or 15% carbon dioxide (CO2) for 2 h at 37 degrees C. Survivors underwent neuropathologic examination at 30 d of postnatal age, and their brains were characterized as follows: 0 = normal; 1 = mild atrophy; 2 = moderate atrophy; 3 = cystic infarct with external dimensions <3 mm; and 4 = cystic infarct with external dimensions >3 mm. The width of the cerebral hemisphere ipsilateral to the carotid artery occlusion also was determined on a posterior coronal section and compared with that of the contralateral hemisphere to ascertain the severity of cerebral atrophy/cavitation. CO2 tensions averaged 5.08, 11.1, and 13.2 kPa in the 3, 12, and 15% CO2-exposed animals, respectively, during hypoxia-ischemia (HI). Neuropathologic results showed that immature rats exposed to 3 and 12% CO2 had similar severities of brain damage. In contrast, rat pups exposed to HI combined with 15% CO2 were significantly more brain damaged than littermates exposed to 3% CO2. Specifically, eight of 14 animals exposed to 15% CO2 showed cystic infarcts (grades 3 and 4), whereas none of 14 littermates exposed to 3% CO2 developed cystic infarcts (p < 0.01). Analyses of coronal width ratios at each CO2 exposure provided results comparable with those of the gross neuropathology scores. Cerebral blood flow (CBF), measured at 90 min of HI, was lowest in those immature rats exposed to 15% CO2 compared with control (p = 0.04), with higher values in those rat pups exposed to 3 and 12% CO2. The findings indicate that 7-d-postnatal rats exposed to HI with superimposed 12% CO2 are neither less nor more brain damaged than littermates exposed to 3% CO(2) (normocapnia). In contrast, animals exposed to 15% CO2 are the most brain damaged of the three groups. Presumably, extreme hypercapnia produces more severe cardiovascular depression than is seen in animals subjected to lesser degrees of hypercapnia; the cardiovascular depression, in turn, leads to greater cerebral ischemia and ultimate brain damage.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge