English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2015-Nov

Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wan Zhang
Helene Pelicano
Ran Yin
Junyi Zeng
Tong Wen
Lu Ding
Ruibin Huang

Keywords

Abstract

Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia, and is currently incurable due to drug resistance. A previous study indicated that the redox interaction between bone marrow stromal cells and leukemia cells profoundly affected CLL cell viability and drug response. The present study aimed to further investigate the effect of the redox interaction on drug resistance of CLL cells in the bone marrow microenvironment, and to assess a novel redox-mediated strategy to eliminate stromal-protected CLL cells, and thus to achieve maximum therapeutic efficacy of antileukemic drugs. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) is a potent novel anticancer agent, however, it exerts limited activity in patients with CLL. The results of the present study demonstrated that SAHA facilitated stromal‑mediated glutathione upregulation in the CLL cells, contributing to drug resistance. The addition of β‑phenylethyl isothiocyanate (PEITC) induced severe depletion of stromal and SAHA‑upregulated glutathione, enhanced SAHA‑mediated reactive oxygen species accumulation in the CLL cells and caused oxidation of mitochondrial cardilopin, leading to substantial cell death. The results further demonstrated that stromal cells and SAHA markedly upregulated antiapoptotic protein expression levels of myeloid cell leukemia 1 (Mcl1) in CLL the cells. By inducing protein deglutathionylation and degradation, PEITC suppressed the expression of Mcl1 in co‑cultured CLL cells, and increased SAHA sensitivity. The combination of SAHA and PEITC enabled the induction of marked apoptosis of CLL cells co‑cultured with bone marrow stromal cells. The present study provided a preclinical rationale, which warrants further clinical investigation for the potential use of SAHA/PEITC as a novel combination treatment strategy for CLL.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge