English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 2002-Aug

Effects of temperature and hypercapnia on ventilation and breathing pattern in the lizard Uromastyx aegyptius microlepis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wilfried Klein
Denis V Andrade
Tobias Wang
E W Taylor

Keywords

Abstract

In most reptiles, the ventilatory response to hypercapnia consists of large increases in tidal volume (V(T)), whereas the effects on breathing frequency (f(R)) are more variable. The increased V(T) seems to arise from direct inhibition of pulmonary stretch receptors. Most reptiles also exhibit a transitory increase in ventilation upon removal of CO(2) and this post-hypercapnic hyperpnea may consist of changes in both V(T) and f(R). While it is well established that increased body temperature augments the ventilatory response to hypercapnia, the effects of temperature on the post-hypercapnic hyperpnea is less described. In the present study, we characterise the ventilatory response of the agamid lizard Uromastyx aegyptius to hypercapnia and upon the return to air at 25 and 35 degrees C. At both temperatures, hypercapnia caused large increases in V(T) and small reductions in f(R), that were most pronounced at the higher temperature. The post-hypercapnic hyperpnea, which mainly consisted of increased f(R), was numerically larger at 35 compared to 25 degrees C. However, when expressed as a proportion of the levels of ventilation reached during steady-state hypercapnia, the post-hypercapnic hyperpnea was largest at 25 degrees C. Some individuals exhibited buccal pumping where each expiratory thoracic breath was followed by numerous small forced inhalations caused by contractions of the buccal cavity. This breathing pattern was most pronounced during severe hypercapnia and particularly evident during the post-hypercapnic hyperpnea.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge