English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Vascular Surgery 1993-Nov

Electron microscopic and immunocytochemical profiles of human subcutaneous fat tissue microvascular endothelial cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Vici
G Pasquinelli
P Preda
G N Martinelli
D Gibellini
A Freyrie
T Curti
M D'Addato

Keywords

Abstract

The ultrastructural and immunocytochemical characteristics of microvascular cells from human subcutaneous fat tissue were studied after the addition of collagenase and Percoll density gradient, respectively. Monoclonal and polyclonal antibodies directed against antigens specific for endothelial cells (factor VIII, Ulex europaeus, CD31, and CD34), pericytes (muscle-specific actin and desmin), adipocytes (S-100 protein), and monocytes-macrophages (MAC 387 and 150.95 protein) were demonstrated by alkaline phosphatase monoclonal anti-alkaline phosphatase and protein A-gold techniques. In addition, to determine whether the harvesting method interfered with microvascular cell function, DOT immunoassays of factor VIII and CD34 were conducted on solutions recovered at collagenase incubation as well as after nylon filtration and Percoll administration, respectively. After the collagenase step, the vast majority of microvascular cells had the typical ultrastructural and immunophenotypical features of endothelial cells. In sharp contrast, following the Percoll step, only 1% to 18% of microvascular cells stained with factor VIII, Ulex europeaus, and CD31, whereas 90% of them expressed the CD34 antigen. Surprisingly, DOT immunoassay revealed the presence of factor VIII in the washing buffer recovered after the Percoll step only. Consequently the decreased expression of common endothelial cell markers (factor VIII, Ulex europaeus, and CD31) observed at the end of the cell isolation procedure was related to the adverse effects of Percoll on endothelial cell function. The CD34 surface molecule, being highly resistant, is particularly well suited for unequivocal characterization of microvascular cells as true endothelium.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge