English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2015-Apr

Enhancement of cadmium tolerance and accumulation by introducing Perilla frutescens (L.) Britt var. frutescens genes in Nicotiana tabacum L. plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Keqiang Wei
Shengxi Pang
Junxian Yang
Zhizhong Wei

Keywords

Abstract

The tobacco has the genetic potential to remove toxic metals from the soil. To develop hyperaccumulating tobacco plants, distant hybridization between tobacco (Nicotiana tabacum L.), a high-biomass crop, and Perilla frutescens (L.) Britt var. frutescens, a newfound Cd-hyperaccumulator species, was carried out using a novel method viz. pollination following grafting. Their hybrid nature was preliminarily confirmed by phenotype, isozyme pattern, random amplified polymorphic DNA (RAPD) and metabolites analysis. About 120 putative F2 hybrids derived from the cross-combination [(N. sylvestris Speg. & Comes rootstock + N. tabacum L. var. 78-04 scion) × P. frutescens (L.) Britt var. frutescens] were then subjected to up to 300 μM CdCl2 in hydroponic conditions for 10 days. Results showed five seedlings were more resistant to Cd than female parent and accumulated 314.6 ± 99.9 mg kg(-1) Cd in their aerial biomass, which was 5.7 times greater than that in "78-04" tobacco (47.2 ± 3.56 mg kg(-1)) (P ≤ 0.05). Two of these seedlings exceeded male parent P. frutescens in the Cd concentration of shoots and reached 424 and 396 mg kg(-1), which was 13% and 6% greater for that of perilla (374.2 ± 10.38 mg kg(-1)), respectively. Compared with parents, two other F2 hybrids tended to accumulate more Cd in the root with bioconcentration factor (BCF) 7.05 and 5.17, respectively. Only one hybrid showed lower Cd concentration but transferred Cd more effectively from the root to the shoot than parents and other F2 hybrids, with the maximum translocation factor (TF) value 1.37. These indicated that the introduction of P. frutescens genes could obviously enhance the cadmium tolerance and accumulation of superior individuals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge