English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology and Evolution 2007-Nov

Evolution of the inflated calyx syndrome in Solanaceae.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin-Yong Hu
Heinz Saedler

Keywords

Abstract

Species that express the inflated calyx syndrome (ICS) are found in several genera of the Solanaceae. The MADS-box protein MPF2, together with the plant hormones cytokinin and gibberellin, has been shown to be responsible for this trait in Physalis floridana. We have used sequence data from 114 species belonging to 35 genera to construct a molecular phylogeny of Solanaceae. Apart from the 2 Witheringia species analyzed, species within a given genus cluster together on the resulting cladogram. Witheringia solanacea is embedded within the Physalinae, but Witheringia coccoloboides is placed basal to the Iochrominae. The ICS trait seems to be of multiple origins both within the Solanaceae and the Physaleae. Surprisingly, expression of MPF2-like genes in floral organs appears to be plesiomorphic in both the Physaleae and the Capsiceae. Some species in these tribes that show neither ICS nor calyx accrescence fail to express the MPF2-like gene in floral organs. Among those that do express this gene in the calyx are the species Capsicum baccatum, Lycianthes biflora, Tubocapsicum anomalum, W. solanacea, and Vassobia breviflora, all of which form small calyces that do not respond to externally applied hormones. The plesiomorphic nature of MPF2-like gene expression in the calyx of the Physaleae and Capsiceae raises the possibility that originally ICS also was actually a plesiomorphic character in these 2 groups. However, this trait might have undergone changes in a number of species due to secondary loss of components in ICS formation, like hormone response of calyx development. These findings are discussed in an evolutionary context of a molecular pathway leading to ICS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge