English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Horticulture Research 2019

Expansion of PmBEAT genes in the Prunus mume genome induces characteristic floral scent production.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fei Bao
Anqi Ding
Tengxun Zhang
Le Luo
Jia Wang
Tangren Cheng
Qixiang Zhang

Keywords

Abstract

Prunus mume is the only plant in the genus Prunus of the Rosaceae family with a characteristic floral scent, and the main component of this scent is benzyl acetate. By contrast, benzyl acetate is not synthesized in Prunus persica flowers. Here, we searched for benzyl alcohol acetyltransferase (BEAT) genes based on genomic data from P. mume and P. persica and found 44 unique PmBEATs in P. mume. These genes, which were mainly detected in clusters on chromosomes, originated from gene duplication events during the species evolution of P. mume, and retroduplication and tandem duplication were the two dominant duplication patterns. The genes PmBEAT34, PmBEAT36 and PmBEAT37, which were generated by tandem duplication, were highly expressed in flowers, and their highest levels were detected during the blooming stage. In vitro, PmBEAT34, PmBEAT3, and PmBEAT37 all had benzyl alcohol acetyltransferase activity that was localized in the cytoplasm. Overexpression of the PmBEAT36 or PmBEAT37 genes increased benzyl acetate production in the petal protoplasts of P. mume, and interference in the expression of these genes slightly decreased the benzyl acetate content. In addition, light and temperature regulated the expression of the PmBEAT34, PmBEAT36 and PmBEAT37 genes. According to these results, we hypothesize that the expansion of the PmBEAT genes in the genome induce the characteristic floral scent of P. mume.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge