English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurology 2009-May

Eye-movement training-induced plasticity in patients with post-stroke hemianopia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gereon Nelles
Anja Pscherer
Armin de Greiff
Michael Forsting
Horst Gerhard
Joachim Esser
H Christoph Diener

Keywords

Abstract

Substantial disability in patients with hemianopia results from reduced visual perception. Previous studies have shown that these patients have impaired saccades. Improving exploratory eye movements with appropriate training of saccades may help to partially compensate for the visuoperceptive impairment during daily life activities. The changes in cortical control of eye movements that may be induced by these training strategies, however, are not known. We used functional magnetic resonance imaging (fMRI) to study the training effects of eye-movement training on cortical control of saccades. Brain activation during visually guided saccades was measured in eight patients with an occipital cortical lesion causing homonymous hemianopia. Starting 8 weeks after the stroke, patients received 4 weeks of visual field training. The fMRI measurements were performed at baseline and after training. In five patients, follow-up fMRI was performed 4 weeks after the end of training. Differences in activation between rest and saccades as well as before and after training were assessed with statistical parametric mapping software (SPM'99). Twelve healthy subjects were scanned twice at a 4-week interval. In patients, significant activation at baseline was found in the frontal and parietal eye fields (FEF and PEF, respectively) bilaterally and in the supplementary eye field (SEF). Immediately after training, an area of increased activation was found in the left extrastriate cortex of the affected hemisphere. At follow-up, relatively more activation was found in the right peristriate cortex and in the SEF of the unaffected side. A relative decrease of activation was found in the left FEF. In this group of patients, eye-movement training induced altered brain activation in the striate and extrastriate cortex as well as in oculomotor areas.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge