English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Breast Cancer 2017-Aug

Fine Needle Aspiration Combined With Matrix-assisted Laser Desorption Ionization Time-of-Flight/Mass Spectrometry to Characterize Lipid Biomarkers for Diagnosing Accuracy of Breast Cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yi-Tzu Cho
Hung Su
Yi-Yan Chiang
Jentaie Shiea
Shyng-Shiou F Yuan
Wen-Chun Hung
Yao-Tsung Yeh
Ming-Feng Hou

Keywords

Abstract

Fine needle aspiration (FNA) cytology has been widely used for pathologic assessment of breast lesions. However, the examination suffers a risk of false-negative results owing to insufficient sample volumes, inaccurate sampling positions, nondefinitive cytologic features, or suboptimal cell preservation. One approach to improve its accuracy is using modern mass spectrometry to detect disease biomarkers, of which the tissue samples are collected through FNA.

The biological compounds in the FNA tissue samples were extracted and characterized by matrix-assisted laser desorption ionization time-of-flight/mass spectrometry (MALDI-TOF/MS). The results were further analyzed by principal component analysis. Distribution of lipid biomarkers on tissues was explored by imaging mass spectrometry.

Lipid profiles of the tissue samples collected by FNA were rapidly obtained through MALDI-TOF/MS analysis. Phosphatidylcholines and triacylglycerols were detected as the predominant compounds in cancerous and normal regions, respectively. The samples were clearly classified by principal component analysis, based on the differences in their lipid profiles. Different lipid patterns were clearly viewed through the molecular imaging of normal and tumorous regions of breast tissue samples.

The FNA-MALDI-TOF/MS approach can provide complementary information for pathological examinations and improve the accuracy of breast cancer diagnoses. Owing to the ease of operation and automation, it is possible to efficiently screen the lipid biomarkers in a large number of tissue samples by means of MALDI-TOF/MS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge