English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research 2004-Sep

Fine structure of degeneration in the cochlear nucleus of the chinchilla after acoustic overstimulation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J J Kim
J Gross
S J Potashner
D K Morest

Keywords

Abstract

To study plastic changes in the cochlear nucleus after acoustic stimulation, adult chinchillas were exposed once to a 4-kHz octave-band noise at 108 dB SPL for 3 hr. After survival times of 1, 2, 4, 8, and 16 weeks, samples were taken for electron microscopy from a part of the cochlear nucleus, where cochlear nerve fibers degenerated after the noise exposure. Progressive changes in fine structure were characterized as early, intermediate, and late stages of degeneration. Freshly occurring synaptic degeneration appeared in each period from 1-16 weeks. Endings with large round vesicles, putative excitatory synapses of the cochlear nerve, displayed progressive increases in neurofilaments and enlarged synaptic vesicles. Compared to controls, synaptic vesicles seemed fewer, often in small clusters in the interior of endings, and smaller in the synaptic zone. These early changes progressed to mitochondrial disintegration and overt "watery" degeneration. Some surviving endings, however, were shrunken and displaced partially by enlarged spaces in the synaptic complex. Dense-cored vesicles gathered in these endings. In terminals with pleomorphic and flattened vesicles, presumed inhibitory endings, cytological changes appeared within 1 week and persisted for months. The synaptic endings darkened, some vesicles disintegrated, and many smaller flatter vesicles collapsed into heaps. Especially at the presynaptic membrane, vesicles were shriveled, but a few mitochondria were preserved. Without overt signs of synaptic degeneration, some of these cytological changes presumably reflect reduced synaptic activity in the inhibitory endings. These changes may contribute to a continuing process associated with abnormal auditory functions, including hyperacusis and tinnitus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge