English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Endocrinological Investigation 1993-Nov

Glycosylation of human prolactin regulates hormone bioactivity and metabolic clearance.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T Hoffmann
C Penel
C Ronin

Keywords

Abstract

To analyze the role of individual glycosylation pattern on PRL biopotency, monomeric prolactin (PRL), secreted by human prolactinoma cells in culture, was isolated by gel filtration and separated by affinity chromatography on Concanavalin A-Sepharose or Lentil-Agarose. These lectins allowed the isolation of PRL glycoforms containing either biantennary, mannose-rich or fucosylated complex carbohydrate structures, respectively. Endoglycosidase treatment and carbohydrate content of PRL was found to be consistent with N-linked oligosaccharides of mannose-rich structure and complex units terminated in sialic acid. Mannose-rich PRL and PRL with biantennary oligosaccharides promoted cell growth of rat lymphoma cells to a diminished extent compared to non-glycosylated PRL (NG-PRL), indicating that the two major types of carbohydrate structure are able to decrease the intrinsic bioactivity of PRL. Metabolic clearance of the various forms of PRL in rats was also found to be highly dependent upon hormone glycosylation. The various glycosylated forms (G-PRLs) proved to be totally eliminated from the circulation within 60 min, faster than NG-PRL 10% of which was still present at that time. Mannose-rich or biantennary G-PRLs were differently cleared in a biphasial fashion with a similar rapid phase of about 2 min followed by distinct slow phases of 12 and 27 min, respectively. The presence of fucose did not alter this distribution. In contrast, NG-PRL was eliminated with a half-time of approximately 5 min, followed by a very slow disappearance over several h. It thus appeared that glycosylation increased the metabolic clearance rate of PRL from 0.13 +/- 0.07 ml/min for NG-PRL to 0.47 +/- 0.12 ml/min for PRL with biantennary carbohydrate chains and 0.8 +/- 0.2 ml/min for the hormone with mannose-rich oligosaccharides. The distribution of PRL to target and elimination organs was also found to be different according to the carbohydrate structure present in the hormone. NG-PRL and mannose-rich G-PRL showed higher incorporation in liver than biantennary G-PRL which was preferentially eliminated by the kidney. Altogether, the current data show that addition of oligosaccharides to PRL as well as carbohydrate structure contribute to modulate both the duration of the hormone in the blood and its distribution to different organs. It is proposed that glycosylation may selectively down-regulate PRL action at individual target tissues.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge