English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Endocrinology 2003-Apr

Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gregory A Horwitz
Irina Miklovsky
Anthony P Heaney
Song-Guang Ren
Shlomo Melmed

Keywords

Abstract

Pituitary tumor-transforming gene (PTTG) originally isolated from GH-secreting pituitary adenoma cells causes in vitro cell transformation, in vivo tumorigenesis, and induces basic fibroblast growth factor. These functions require an intact C-terminal proline-proline-serine-proline motif. PTTG1 is abundantly expressed in human pituitary tumors and plays a role in the early stages of experimental prolactinoma formation. We now determined direct effects of PTTG1 on hormonal phenotypes of functional pituitary tumor cells. Overexpression of PTTG1 C terminus (amino acids 147-202) containing intact proline-proline-serine-proline motifs in rat prolactin (PRL)- and GH-secreting GH3 cells markedly abrogates PRL mRNA expression by more than 90% (P < 0.001) and hormone levels (P < 0.001) and PRL promoter activity (P < 0.01) compared with control vector cells or to a PTTG1 C terminus mutant (P163A, S165Q, P166L, P170L, P172A, and P173L). Wild-type PTTG1 C-terminal transfectants formed smaller (P < 0.05) sc tumors in rats compared with control or mutated PTTG1 C-terminal transfectants. Estrogen (10 nm) treatment for 48 h partially restored PRL expression in stable wild-type PTTG1 C-terminal transfectants. These results indicate that targeting PTTG1-mediated signaling alters the hormonal phenotype in pituitary cells and disrupted PTTG1 action may be a potential subcellular therapeutic tool for repressing PRL hypersecretion.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge