English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FEBS Letters 2010-Jun

Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Masaaki Shibuya
Kazuya Nishimura
Nao Yasuyama
Yutaka Ebizuka

Keywords

Abstract

Triterpene saponins are a diverse group of compounds with a structure consisting of a triterpene aglycone and sugars. Identification of the sugar-transferase involved in triterpene saponin biosynthesis is difficult due to the structural complexity of triterpene saponin. Two glycosyltransferases from Glycine max, designated as GmSGT2 and GmSGT3, were identified and characterized. In vitro analysis revealed that GmSGT2 transfers a galactosyl group from UDP-galactose to soyasapogenol B monoglucuronide, and that GmSGT3 transfers a rhamnosyl group from UDP-rhamnose to soyasaponin III. These results suggest that soyasaponin I is biosynthesized from soyasapogenol B by successive sugar transfer reactions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge