English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2009-Dec

Identification of the penta-EF-hand protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Silvia Vergarajauregui
Jose A Martina
Rosa Puertollano

Keywords

Abstract

Loss of function mutations in mucolipin-1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a recessive lysosomal storage disease characterized by severe neurological and ophthalmological abnormalities. MCOLN1 is an ion channel that regulates membrane transport along the endolysosomal pathway. It has been suggested that MCOLN1 participates in several Ca(2+)-dependent processes, including fusion of lysosomes with the plasma membrane, fusion of late endosomes and autophagosomes with lysosomes, and lysosomal biogenesis. Here, we searched for proteins that interact with MCOLN1 in a Ca(2+)-dependent manner. We found that the penta-EF-hand protein ALG-2 binds to the NH-terminal cytosolic tail of MCOLN1. The interaction is direct, strictly dependent on Ca(2+), and mediated by a patch of charged and hydrophobic residues located between MCOLN1 residues 37 and 49. We further show that MCOLN1 and ALG-2 co-localize to enlarged endosomes induced by overexpression of an ATPase-defective dominant-negative form of Vps4B (Vps4B(E235Q)). In agreement with the proposed role of MCOLN1 in the regulation of fusion/fission events, we found that overexpression of MCOLN1 caused accumulation of enlarged, aberrant endosomes that contain both early and late endosome markers. Interestingly, aggregation of abnormal endosomes was greatly reduced when the ALG-2-binding domain in MCOLN1 was mutated, suggesting that ALG-2 regulates MCOLN1 function. Overall, our data provide new insight into the molecular mechanisms that regulate MCOLN1 activity. We propose that ALG-2 acts as a Ca(2+) sensor that modulates the function of MCOLN1 along the late endosomal-lysosomal pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge