English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gut 2007-Feb

Ileitis alters neuronal and enteroendocrine signalling in guinea pig distal colon.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jennifer R O'Hara
Alan E Lomax
Gary M Mawe
Keith A Sharkey

Keywords

Abstract

OBJECTIVE

Intestinal inflammation alters neuronal and enteroendocrine signalling, leading to functional adaptations in the inflamed bowel. Human studies have reported functional alterations at sites distant from active inflammation. Our aims were to determine whether neuronal and enteroendocrine signalling are altered in the uninflamed colon during ileitis.

METHODS

We used neurophysiological, immunohistochemical, biochemical and Ussing chamber techniques to examine the effect of 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced ileitis on the properties of submucosal neurones, enteroendocrine cells and epithelial physiology of the distal colon of guinea pigs.

RESULTS

Three days after TNBS administration, when inflammation was restricted to the ileum, the properties of colonic enteric neurones were altered. Submucosal AH neurones were hyperexcitable and had reduced after hyperpolarisations. S neurones received larger fast and slow excitatory postsynaptic potentials, due to an increase in non-cholinergic synaptic transmission. Despite the absence of inflammation in the colon, we found increased colonic prostaglandin E(2) content in animals with ileitis. Ileitis also increased the number of colonic 5-hydroxytryptamine (5-HT)- and GLP-2-immunoreactive enteroendocrine cells. This was accompanied by an increase in stimulated 5-HT release. Functional alterations in epithelial physiology occurred such that basal short circuit current was increased and veratridine-stimulated ion transport was reduced in the colon of animals with ileitis.

CONCLUSIONS

Our data suggest that inflammation at one site in the gut alters the cellular components of enteric reflex circuits in non-inflamed regions in ways similar to those at sites of active inflammation. These changes underlie altered function in non-involved regions during episodes of intestinal inflammation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge