English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 2012-Dec

Impaired mitochondrial respiration and decreased fatigue resistance followed by severe muscle weakness in skeletal muscle of mitochondrial DNA mutator mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takashi Yamada
Niklas Ivarsson
Andrés Hernández
Andreas Fahlström
Arthur J Cheng
Shi-Jin Zhang
Joseph D Bruton
Brun Ulfhake
Håkan Westerblad

Keywords

Abstract

Mitochondrial dysfunction can drastically impair muscle function, with weakness and exercise intolerance as key symptoms. Here we examine the time course of development of muscle dysfunction in a mouse model of premature ageing induced by defective proofreading function of mitochondrial DNA (mtDNA) polymerase (mtDNA mutator mouse). Isolated fast-twitch muscles and single muscle fibres from young (3-5 months) and end-stage (11 months) mtDNA mutator mice were compared to age-matched control mice. Force and free myoplasmic [Ca(2+)] ([Ca(2+)](i)) were measured under resting conditions and during fatigue induced by repeated tetani. Muscles of young mtDNA mutator mice displayed no weakness in the rested state, but had lower force and [Ca(2+)](i) than control mice during induction of fatigue. Muscles of young mtDNA mutator mice showed decreased activities of citrate synthase and β-hydroxyacyl-coenzyme A dehydrogenase, reduced expression of cytochrome c oxidase, and decreased expression of triggers of mitochondrial biogenesis (PGC-1α, PPARα, AMPK). Muscles from end-stage mtDNA mutator mice showed weakness under resting conditions with markedly decreased tetanic [Ca(2+)](i), force per cross-sectional area and protein expression of the sarcoplasmic reticulum Ca(2+) pump (SERCA1). In conclusion, fast-twitch muscles of prematurely ageing mtDNA mutator mice display a sequence of deleterious mitochondrial-to-nucleus signalling with an initial decrease in oxidative capacity, which was not counteracted by activation of signalling to increase mitochondrial biogenesis. This was followed by severe muscle weakness in the end stage. These results have implication for normal ageing and suggest that decreased mitochondrial oxidative capacity due to a sedentary lifestyle may predispose towards muscle weakness developing later in life.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge