English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2016-Oct

Increased oxidative stress, lipid peroxidation and protein degradation trigger senescence in Iris versicolor L. flowers.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Syed Sabhi Ahmad
Inayatullah Tahir

Keywords

Abstract

Dynamics in various physiological and biochemical aspects were studied during various stages (I-tight bud stage to VI-senescent stage) of flower development in Iris versicolor. Floral diameter, fresh & dry mass and water content increased during flower opening and decreased towards senescence. Senescence was found to be related to the increased lipid peroxidation which was reflected in the decreased membrane stability index towards senescence. This increase in the lipid peroxidation was probably initiated by increased lipoxygenase activity which shot up just prior to the increase in lipid peroxidation. Soluble protein content showed a marginal decrease towards senescence with a corresponding increase in specific protease activity. Sugar fractions and α-amino acids showed a significant decrease towards senescence. Superoxide dismutase and ascorbate peroxidase activity increased as the flowers opened and thereafter a significant decrease was registered towards senescence. Catalase activity improved as the flower matures, but decreased prior to flower opening through senescence. The protein patterns from the tepal tissues resolved through electrophoresis showed a consistency in proteins upto the flower opening but a marginal decrease was registered in both high and low molecular weight proteins towards senescence. However, a protein of molecular weight 76.5 kDa showed up during senescent stages which may have a role in flower senescence.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge