English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 1999-Feb

Inhibition of serum deprivation- and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B Ahlemeyer
A Möwes
J Krieglstein

Keywords

Abstract

Previous studies have already demonstrated that some constituents of an extract of Ginkgo biloba (EGb), such as ginkgolide B and bilobalide, protect cultured neurons from hypoxia- and glutamate-induced damage. This prompted us to investigate whether they were also able to inhibit neuronal apoptosis. We induced apoptosis in cultured chick embryonic neurons as well as in mixed cultures of neurons and astrocytes from neonatal rat hippocampus by serum deprivation and staurosporine. The increase in the percentage of apoptotic chick neurons from 12% in controls to 30% after 24 h of serum deprivation was reduced to control level by EGb (10 mg/l), ginkgolide B (10 microM), ginkgolide J (100 microM) and bilobalide (1 microM). After treatment with staurosporine (200 nM) for 24 h we observed 74% apoptotic chick neurons. This percentage of apoptotic neurons was reduced to 24%, 62% and 31% in the presence of EGb (100 mg/l), ginkgolide J (100 microM) and ginkgolide B (10 microM), respectively. Bilobalide (10 microM) decreased apoptotic damage induced by staurosporine treatment for 12 h nearly to the control level. In mixed neuronal/glial cultures, the extract of EGb (100 mg/l) and bilobalide (100 microM) rescued rat neurons from apoptosis caused by serum deprivation, whereas, bilobalide (100 microM) and ginkgolide B (100 microM) reduced staurosporine-induced apoptotic damage. Ginkgolide A revealed no anti-apoptotic effect in either serum-deprived or staurosporine-treated neurons. Our results suggest that EGb and some of its constituents possess anti-apoptotic capacity and that bilobalide is the most potent constituent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge