English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurophysiology 2014-Feb

Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ann E Hickox
M Charles Liberman

Keywords

Abstract

Perceptual abnormalities such as hyperacusis and tinnitus often occur after acoustic overexposure. Although such exposure can also result in permanent threshold elevation, some individuals with noise-induced hyperacusis or tinnitus show clinically normal thresholds. Recent work in animals has shown that a "neuropathic" noise exposure can cause immediate, permanent degeneration of the cochlear nerve despite complete threshold recovery and lack of hair cell damage (Kujawa SG, Liberman MC. J Neurosci 29: 14077-14085, 2009; Lin HW, Furman AC, Kujawa SG, Liberman MC. J Assoc Res Otolaryngol 12: 605-616, 2011). Here we ask whether this noise-induced primary neuronal degeneration results in abnormal auditory behavior, based on the acoustic startle response (ASR) and prepulse inhibition (PPI) of startle. Responses were measured in mice exposed either to a "neuropathic" noise or to a lower-intensity, "nonneuropathic" noise and in unexposed control mice. Mice with cochlear neuropathy displayed hyperresponsivity to sound, evidenced by enhanced ASR and PPI, while exposed mice without neuronal loss showed control-like responses. Gap PPI tests, often used to assess tinnitus, revealed limited gap detection deficits in mice with cochlear neuropathy only for certain gap-startle latencies, inconsistent with the presence of tinnitus "filling in the gap." Despite significantly reduced wave 1 of the auditory brainstem response, representing cochlear nerve activity, later peaks were unchanged or enhanced, suggesting compensatory neural hyperactivity in the auditory brainstem. Considering the rapid postexposure onset of both cochlear neuropathy and exaggerated startle-based behavior, the results suggest a role for cochlear primary neuronal degeneration, per se, in the central neural excitability that could underlie the generation of hyperacusis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge