English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Sciences 2019-Jun

Isolated Compounds from Turpinia formosana Nakai Induce Ossification.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zuha Imtiyaz
Yi-Fang Wang
Yi-Tzu Lin
Hui-Kang Liu
Mei-Hsien Lee

Keywords

Abstract

Bone metabolism is a homeostatic process, imbalance in which leads to the onset of diseases such as osteoporosis and osteopenia. Although several drugs are currently available to treat such conditions, they are associated with severe side effects and do not enhance bone formation. Thus, identifying alternative treatment strategies that focus on enhancing bone formation is essential. Herein, we explored the osteogenic potential of Turpinia formosana Nakai using human osteoblast (HOb) cells. The plant extract was subjected to various chromatographic techniques to obtain six compounds, including one new compound: 3,3'-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1). Compounds 3,3'-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1), gentisic acid 5-O-β-d-(6'-O-galloyl) glucopyranoside (2), strictinin (3), and (-)-epicatechin-3-O-β-d-allopyranoside (6) displayed no significant cytotoxicity toward HOb cells, and thus their effects on various osteogenic markers were analyzed. Results showed that 1-3 and 6 significantly increased alkaline phosphatase (ALP) activity up to 120.0, 121.3, 116.4, and 125.1%, respectively. Furthermore, 1, 2, and 6 also markedly enhanced the mineralization process with respective values of up to 136.4, 118.9, and 134.6%. In addition, the new compound, 1, significantly increased expression levels of estrogen receptor-α (133.4%) and osteogenesis-related genes of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), bone morphogenetic protein (BMP)-2, bone sialoprotein (BSP), type I collagen (Col-1), and brain-derived neurotropic factor (BDNF) by at least 1.5-fold. Our results demonstrated that compounds isolated from T. formosana possess robust osteogenic potential, with the new compound, 1, also exhibiting the potential to enhance the bone formation process. We suggest that T. formosana and its isolated active compounds deserve further evaluation for development as anti-osteoporotic agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge