English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Immunology 2000-Jul

Lack of metallothionein-I and -II exacerbates the immunosuppressive effect of ultraviolet B radiation and cis-urocanic acid in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V E Reeve
N Nishimura
M Bosnic
A E Michalska
K H Choo

Keywords

Abstract

The effect of a null mutation for the metallothionein (MT)-I and -II isoforms in mice on the immunosuppressive action of ultraviolet B (UVB; 280-320 nm) radiation has been examined. Mice were exposed to a series of increasing daily UVB doses, each dose administered to the dorsum on 3 consecutive days. Erythema was assessed, and measured as its oedema component by the post-irradiation dorsal skinfold thickness, but there was no effect of the null mutation (MT-/-) observed after 3 x 3.4 kJ/m2 of UVB radiation. Immune function was assessed by the contact hypersensitivity (CHS) response, which was initiated by sensitization on unirradiated abdominal skin, and thus demonstrated the systemic effects of dorsal treatments. In comparison with the wild-type MT+/+ mouse, the MT-/- mouse was significantly more immunosuppressed by moderate daily UVB doses (1. 75-5.9 kJ/m2). When topically applied cis-urocanic acid (cis-UCA) replaced UVB radiation as the immunosuppressive agent, contact hypersensitivity in MT-/- mice was again markedly more suppressed than in MT+/+ mice, in a dose-responsive manner. The results infer that MT, which was shown immunohistochemically to be strongly induced in the epidermis of MT+/+ mice, but to be absent in MT-/- epidermis, has the potential to protect from photoimmunosuppression, and that the mechanism of action may be via the inactivation of the epidermal UVB-photoproduct, cis-UCA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge