English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Cancer Therapeutics 2015-Mar

Mechanisms of Overcoming Intrinsic Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma through the Redox Modulation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Huai-Qiang Ju
Takeshi Gocho
Mitzi Aguilar
Min Wu
Zhuo-Nan Zhuang
Jie Fu
Katsuhiko Yanaga
Peng Huang
Paul J Chiao

Keywords

Abstract

Pancreatic ductal adenocarcinoma (PDAC) frequently develops therapeutic resistances, which can be divided into extrinsic and intrinsic resistance. The extrinsic resistance that arises from the surrounding dense tumor stroma is much better understood. However, the mechanisms of intrinsic resistance are not well understood. Here, we report that reactive oxygen species (ROS) induced by gemcitabine treatment, a newly discovered cytotoxic activity, served as a probe in our study to reveal the mechanisms of the intrinsic therapeutic resistance. Our results showed that gemcitabine-induced ROS is generated by NOX and through the increase of p22(-phox) expression via NF-κB activation. As a feedback mechanism, nuclear translocation of Nrf2 stimulated the transcription of cytoprotective antioxidant genes, especially genes encoding enzymes that catalyze glutathione (GSH) production to reduce elevated ROS as an intrinsic resistance countermeasure. RNAi-mediated depletion of Nrf2 or addition of β-phenylethyl isothiocyanate inhibited the ROS detoxification process by reducing GSH levels, which, in turn, increased the efficacy of gemcitabine in vitro and in vivo. Thus, our study suggests that a redox-mediated pathway contributes to the intrinsic resistance of PDAC to gemcitabine and provides a basis for developing strategies to preferentially kill PDAC cells through ROS-mediated mechanism. The combination of gemcitabine and PEITC has a selective cytotoxic effect against pancreatic cancer cells in vivo and could thus prove valuable as a cancer treatment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge