English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Society Transactions 2013-Dec

Metabolic and cellular bases of sphingolipidoses.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Konrad Sandhoff

Keywords

Abstract

Lysosomes are cellular stomachs. They degrade macromolecules and release their components as nutrients into the cytosol. Digestion of sphingolipids and other membrane lipids occurs at luminal intraendosomal vesicles and IMs (intraendosomal membranes). Sphingolipid and membrane digestion needs catabolic hydrolases with the help of lipid-binding proteins [SAPs (sphingolipid activator proteins)] and anionic lipids such as BMP [bis(monoacylglycero)phosphate]. Inherited defects of hydrolases or SAPs or uptake of cationic amphiphilic drugs cause lipid accumulation, eventually leading to death, especially in inherited sphingolipid storage diseases. IMs are formed during endocytosis and their lipid composition is adjusted for degradation. Their cholesterol content, which stabilizes membranes, decreases and the level of negatively charged BMP, which stimulates sphingolipid degradation, increases. At the level of late endosomes, cholesterol is transported out of the luminal vesicles preferentially by cholesterol-binding proteins, NPC (Niemann-Pick type C)-2 and NPC-1. Their defects lead to an endolysosomal accumulation of cholesterol and sphingolipids in Niemann-Pick type C disease. BMP and ceramide stimulate NPC-2-mediated cholesterol transfer, whereas sphingomyelin inhibits it. Anionic membrane lipids also activate sphingomyelin degradation by ASM (acid sphingomyelinase), facilitating cholesterol export by NPC-2. ASM is a non-specific phospholipase C and degrades more than 23 phospholipids. SAPs are membrane-perturbing proteins which solubilize lipids, facilitating glycolipid digestion by presenting them to soluble catabolic enzymes at acidic pH. High BMP and low cholesterol levels favour lipid extraction and membrane disintegration by saposin A and B. The simultaneous inherited defect of saposins A-D causes a severe membrane and sphingolipid storage disease, also disrupting the water permeability barrier of the skin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge