English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolic Engineering 2015-Mar

Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lixiang Li
Kun Li
Yu Wang
Chao Chen
Youqiang Xu
Lijie Zhang
Binbin Han
Chao Gao
Fei Tao
Cuiqing Ma

Keywords

Abstract

Biotechnological production of biofuels is restricted by toxicity of the products such as ethanol and butanol. As its low toxicity to microbes, 2,3-butanediol (2,3-BD), a fuel and platform bio-chemical, could be a promising alternative for biofuel production from renewable bioresources. In addition, no bacterial strains have been reported to produce enantiopure 2,3-BD using lignocellulosic hydrolysates. In this study, Enterobacter cloacae strain SDM was systematically and metabolically engineered to construct an efficient biocatalyst for production of the fuel and enantiopure bio-chemical-(2R,3R)-2,3-BD. First, the various (2R,3R)-2,3-BD dehydrogenase encoding genes were expressed in a meso-2,3-BD dehydrogenase encoding gene disrupted E. cloacae strain under native promoter Pb of the 2,3-BD biosynthetic gene cluster of E. cloacae. Then, carbon catabolite repression was eliminated via inactivation of the glucose transporter encoding gene ptsG and overexpression of a galactose permease encoding gene galP. The resultant strain could utilize glucose and xylose simultaneously. To improve the efficiency of (2R,3R)-2,3-BD production, the byproduct-producing genes (ldh and frdA) were knocked out, thereby enhancing the yield of (2R,3R)-2,3-BD by 16.5% in 500-mL Erlenmeyer flasks. By using fed-batch fermentation in a 5-L bioreactor, 152.0 g/L (2R,3R)-2,3-BD (purity>97.5%) was produced within 44 h with a specific productivity of 3.5 g/[Lh] and a yield of 97.7% from a mixture of glucose and xylose, two major carbohydrate components in lignocellulosic hydrolysates. In addition, when a lignocellulosic hydrolysate was used as the substrate, 119.4 g/L (2R,3R)-2,3-BD (purity>96.0%) was produced within 51 h with a productivity of 2.3g/[Lh] and a yield of 95.0%. These results show that the highest records have been acquired for enantiopure (2R,3R)-2,3-BD production by a native or engineered strain from biomass-derived sugars. In addition to producing the 2,3-BD, our systematic approach might also be used in the production of other important chemicals by using lignocellulose-derived sugars.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge