English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
APL bioengineering 2018-Jun

Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alejandro Hidalgo
Nick Glass
Dmitry Ovchinnikov
Seung-Kwon Yang
Xinli Zhang
Stuart Mazzone
Chen Chen
Ernst Wolvetang
Justin Cooper-White

Keywords

Abstract

Coronary intervention following ST-segment elevation myocardial infarction (STEMI) is the treatment of choice for reducing cardiomyocyte death but paradoxically leads to reperfusion injury. Pharmacological post-conditioning is an attractive approach to minimize Ischemia-Reperfusion Injury (IRI), but candidate drugs identified in IRI animal models have performed poorly in human clinical trials, highlighting the need for a human cell-based model of IRI. In this work, we show that when we imposed sequential hypoxia and reoxygenation episodes [mimicking the ischemia (I) and reperfusion (R) events] to immature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), they display significant hypoxia resistance and minimal cell death (∼5%). Metabolic maturation of hPSC-CMs for 8 days substantially increased their sensitivity to changes in oxygen concentration and led to up to ∼30% cell death post-hypoxia and reoxygenation. To mimic the known transient changes in the interstitial tissue microenvironment during an IRI event in vivo, we tested a new in vitro IRI model protocol that required glucose availability and lowering of media pH during the ischemic episode, resulting in a significant increase in cell death in vitro (∼60%). Finally, we confirm that in this new physiologically matched IRI in vitro model, pharmacological post-conditioning reduces reperfusion-induced hPSC-CM cell death by 50%. Our results indicate that in recapitulating key aspects of an in vivo IRI event, our in vitro model can serve as a useful method for the study of IRI and the validation and screening of human specific pharmacological post-conditioning drug candidates.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge