English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2017-Oct

Monitoring the ecotoxicity of γ-Al2O3 and Ni/γ-Al2O3 nanomaterials by means of a battery of bioassays.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gabriela Svartz
Mariana Papa
Marina Gosatti
Marianela Jordán
Analia Soldati
Paula Samter
María M Guraya
Cristina Pérez Coll
Soledad Perez Catán

Keywords

Abstract

The increasing application of nanoparticles (NPs) to a variety of new technologies has become a matter of concern due to the potential toxicity of these materials. Many questions about the fate of NPs in the environment and the subsequent impact on ecosystems need to be answered. The aim of this work was to evaluate the ecotoxicity of two alumina-based nanoceramics, γ-Al2O3 (NC) and Ni/ γ-Al2O3 (NiNC) by means of three different standardized tests: Biochemical Oxygen Demand (BOD5), bioassay with luminescent bacteria (Vibrio fischeri; Microtox), and bioassay on amphibian larvae (Rhinella arenarum) (AMPHITOX). BOD5 values of a very biodegradable mixture (glucose/glutamic acid) decreased with the addition of NiNC(43.8%) and NC (31.6%) with respect to control samples (52.9%). Microtox test results indicated that NiNC presents higher toxicity than NC, with EC50s values of 16.1% and 29.9% respectively; a reduced toxicity was observed, however, in presence of organic matter, thus obtaining EC50s of 37.8% and 19.4%. The results of AMPHITOX test showed a significant increase in the toxicity of both substances over time, the NiNC toxicity being greater than that of NC. The values of 96h-LC50 and 504h-LC50 determined for NiNC were 1.58 and 0.83mg/L, respectively, and 14.5 and 10.5mg/L for NC samples. Amphibian larvae exhibited collapsed cavities, edema, axial flexures, and behavioral alterations as hyperkinesia and reduced movements. These results evidence the vulnerability of wildlife to xenobiotics and the need to develop specific standardized ecotoxicity tests in order to help environmental sustainability and natural species conservation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge