English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fish and Shellfish Immunology 2018-Nov

Multi-strain probiotics enhance immune responsiveness and alters metabolic profiles in the New Zealand black-footed abalone (Haliotis iris).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Roffi Grandiosa
Fabrice Mérien
Tim Young
Thao Van Nguyen
Noemi Gutierrez
Eileen Kitundu
Andrea C Alfaro

Keywords

Abstract

We assessed whether dietary administration of a multi-strain probiotic (Exiguobacterium JHEb1, Vibrio JH1 and Enterococcus JHLDc) lead to enhanced immune responsiveness in juvenile New Zealand black-footed abalone (Haliotis iris). Two groups of abalone were fed (1% body weight per day) over a four-month period with different diets. The control diet consisted of a standard commercial pellet feed (AbMax 16), whereas the treatment diet was additionally enriched with the probiotic mix. At the end of the experiment, probiotic-fed animals showed improved growth compared with control-fed abalone in length (32.3% vs 22.3%), width (31.9% vs 20.7%) and wet weight (109.6% vs 72.8%), respectively. Haemolymph sampling was conducted at the beginning of the experiment and after 2 and 4 months. Haemolymph samples were analysed for total haemocyte count (THC) and viability, presence of apoptotic cells and production of Reactive Oxygen Species (ROS). Compared with control abalone, probiotic-fed abalone had significantly higher THC (1.9 × 106 vs 5.6 × 105 cells), higher viability (90.8% vs 75.6%), higher percentage of ROS-positive cells (19.4% vs 0.5%) and higher numbers of non-apoptotic cells (88.0% vs 78.0%), respectively. These results indicate that the probiotic-enriched diet enhanced the immunostimulatory mechanisms, with a simultaneous low-level up-regulation of ROS production as a priming mechanism of the antibacterial defence system. Metabolomics-based profiling of foot muscle tissue additionally revealed that probiotic-fed abalone differentially expressed 17 unique metabolites, including amino acids, fatty acids and TCA cycle related compounds. These data suggest that the probiotic-supplemented diet can also alter central carbon metabolic processes, which may improve the survival, as well as the growth of abalone.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge