English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2019-Feb

Neuromuscular electrical stimulation improves muscle atrophy induced by chronic hypoxia-hypercapnia through the MicroRNA-486/PTEN/FoxO1 pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jie Shen
Xue Nie
Shi-Yuan Huang
Yan-Qing Qin
Lu-Lu Pan
Xiao-Tong Wang

Keywords

Abstract

Previous work has confirmed that the chronic hypoxia-hypercapnia (CHH) associated with chronic obstructive pulmonary disease contributes to the development of skeletal muscle atrophy. Neuromuscular Electrical Stimulation (NMES) has shown some efficacy when used as a treatment to reduce skeletal muscle atrophy. The present study focuses on the MicroRNA-486/PTEN/FoxO1 pathway with the goal of identifying its physiological role in skeletal muscle atrophy induced by CHH as well as its role during NMES treatment. To test this, 32 male Sprague Dawley rats were randomly divided into four groups. After completion of the disease modeling, gastrocnemius muscles were collected from all animals and cross-sectional areas of muscular fiber were observed and analyzed via H&E staining. MiR-486 expression was further assessed by qRT-PCR, and protein levels of TNF-α, PTEN, p-Akt, Akt, FoxO1, atrogin-1 and MuRF1 were measured by immunohistochemistry and western blotting. CSA, miR-486, and the ratio p-Akt/Akt were significantly reduced in the CHH group, while the levels of TNF-α, PTEN, FoxO1, atrogin-1, and MuRF1 were markedly increased. Importantly, these findings were reversed as a result of NMES. Thus, the MicroRNA-486/PTEN/FoxO1 pathway functions in muscle protein synthesis and degradation. NEW & NOTEWORTHY: Our research provides a theoretical basis for the application of NMES as a means of improving muscle atrophy. Moreover, these therapeutic targets provide possible clues relevant to the treatment of amyotrophic diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge