English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neural Transmission 2019-Aug

Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kurt Jellinger

Keywords

Abstract

Extrapyramidal movement disorders comprise hypokinetic-rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits that have been briefly reviewed in part 1 of the papers on neuropathology and pathogenesis of extrapyramidal movement disorders. The classification of hyperkinetic forms distinguishes the following: (1) chorea and related syndromes; (2) dystonias (dyskinesias); (3) tics and tourette disorders; (4) ballism; (5) myoclonic and startle disorders; and (6) tremor syndromes. Recent genetic and molecular classification distinguishes the following: (1) polyglutamine disorders (Huntington's disease and related disorders); (2) pantothenate kinase associated neurodegeneration; (3) Wilson's disease and related disorders; and (4) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood but is suggested to result from an interaction between genetic and environmental factors, multiple etiologies, and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, chronic neuroinflammation), being more likely than one single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. A timely overview of the neuropathology and pathogenesis of the major hyperkinetic movement disorders is presented.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge