English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Neuroanatomy 2000-Dec

Nicotinic receptors in human brain: topography and pathology.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J A Court
C Martin-Ruiz
A Graham
E Perry

Keywords

Abstract

Brain nicotinic acetylcholine receptors (nAChR) are a class of ligand-gated channels composed of alpha and beta subunits with specific structural, functional and pharmacological properties. They participate in the physiological and behavioural effects of acetylcholine and mediate responses to nicotine. They are associated with numerous transmitter systems and their expression is altered during development and ageing as well as in diseases such as autism, schizophrenia, Alzheimer's disease, Parkinson's disease and Lewy body dementia. Nicotinic receptors containing a number of different subunits are highly expressed during early human development. Disorders believed to be associated with abnormal brain maturation involve deficits in both alpha4beta2, in the case of autism, and alpha7 possibly in addition to alpha4beta2 nAChRs in the case of schizophrenia. In ageing and age-related neurodegenerative disorders nAChR deficits are predominantly associated with alpha4-containing receptors, although some studies also indicate the involvement of alpha3 and alpha7 subunits. Whilst ageing appears to be associated with reductions in subunit mRNA as well as protein expression, in Alzheimer's disease only protein loss is apparent. Nicotinic therapy may be of benefit in a number of neurological conditions, however studies evaluating further both the distribution of specific subunit involvement and the correlation of nAChR deficits with clinical symptoms are required to inform therapeutic strategy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge