English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncology Reports 2014-May

Oleanolic acid enhances the radiosensitivity of tumor cells under mimetic hypoxia through the reduction in intracellular GSH content and HIF-1α expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rongxin Qi
Wenwen Jin
Juan Wang
Qiyi Yi
Maohu Yu
Shiguo Xu
Wensen Jin

Keywords

Abstract

We previously found that oleanolic acid (OA), a naturally pentacyclic triterpenoid, enhances the radiosensitizing effect on tumor cells. However, it is unclear whether or not OA enhances the radiosensitivity of hypoxic cells. Therefore, the aim of the present study was to further observe the influence of OA on hypoxic tumor cells, and the relative mechanism was also investigated. The radiosensitivity of rat glioma C6 cells and human lung cancer A549 cells with different treatments, under mimetic hypoxia, was evaluated by clonogenic assay. A micronucleus (MN) test, meanwhile, was utilized to observe the alteration in intracellular DNA damage. For determining the mechanism involved in the OA influence on the radiosensitivity of hypoxic cells, we determined the levels of intracellular reduced glutathione (GSH) using the glutathione reductase/5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) recycling assay. Simultaneously, the activities of γ-glutamylcysteine synthetase (γ-GCS) and GSH synthase (GSS), both enzymes for GSH synthesis, were tested using appropriate methods. Due to the involvement of hypoxia inducible factor-1α (HIF-1α) in the resistence of hypoxic cells to radiation damage, its levels were also observed by western blot method. The results from this study demonstrated that the clonogenic growth of irradiated cells was increased under mimetic hypoxia while the refractory effect of hypoxic cells to radiation was decreased following OA treatment. Moreover, the (MN) frequencies in the hypoxic cells treated with OA were augmented after irradiation compared with the cells without OA treatment. In the subsequent experiment, OA significantly reduced the biosynthesis of intracellular GSH via the attenuation of γ-GCS activity. Additionally, there was an obvious reduction in HIF-1α expression in irradiated cells treated with OA at different concentrations. In conclusion, OA significantly enhanced the radiosensitivity of tumor cells under mimetic hypoxia, through the reduction in intracellular GSH content and HIF-1α expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge