English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of the New York Academy of Sciences 1988

Pathophysiology of cardiomyocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Borgers
L Ver Donck
G Vandeplassche

Keywords

Abstract

Isolated cardiomyocytes lend themselves very well to the quantification of pathological damage and to the determination of reversible versus irreversible changes. These single cells were used to study the cellular response to a variety of pathologic stimuli that impair structure and function. Degenerative alterations are accompanied by hyperactivation and irreversible rounding up of otherwise quiescent rod-shaped cells. Stereotypic degenerative changes and loss of sarcolemma-bound Ca2+ were seen during prolonged severe hypoxia, exposure to either depolarizing concentrations of potassium, veratrine, acylcarnitines, cationic amphiphiles, free-radical-generating systems, cardiac glycosides, or uncouplers of oxidative phosphorylation. Since the presence of extracellular Ca2+ is a prerequisite to obtain cell degeneration in most of these aggressive insults and since cellular Ca2+ overload parallels the damage, we studied the influence of representative compounds of the various subclasses of Ca2+ antagonists: verapamil, nifedipine, nicardipine, and diltiazem (Ca2+ blockers with high affinity for cardiac slow Ca2+ channels), cinnarizine, flunarizine, lidoflazine, and mioflazine (Ca2+ blockers with no affinity for cardiac slow Ca2+ channels). The non-slow-channel-blocking drugs were generally superior in protection against the imposed insults suggesting that prevention of Ca2+ overload is not correlated with slow channel blockade. For the latter group of drugs, other (hitherto not elucidated) mechanisms of membrane-drug interactions seem to be responsible for the preservation of Ca2+ homeostasis during the induction of pathological Ca2+ influx.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge