English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of General Physiology 1951-Jul

Potassium movement in relation to nerve activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard

Keywords

Abstract

The depolarization of crab nerve during repetitive stimulation is unaffected by the presence of glucose or by an increase in the calcium content of the medium. It is increased in both amplitude and rate by veratrine; in the presence of this alkaloid mixture the rate but not the magnitude of the depolarization is increased by an elevation in the calcium concentration. Repolarization following stimulation is unaltered by glucose and accelerated by a greater calcium concentration. Veratrine increases both the amplitude and the time constant of repolarization; its effect on the time constant is counteracted by an elevation of the calcium in the medium. Potassium released during stimulation and its reabsorption following activity have been observed by analyses of small volumes of sea water in contact with crab nerve. Under the conditions employed 3 x 10(-8) microM potassium is liberated per impulse per gm. wet weight of nerve. This loss is increased by low concentrations of veratrine, which also increase the amount reabsorbed during recovery. The depletion of potassium from the medium is appreciably less if the potassium previously released during activity has not been removed. Inexcitability resulting from anoxia can be washed away with oxygen-free solution-rapidly and completely in the case of the squid axon, slowly and incompletely in crab nerve. The potassium shifts are in the proper direction and of the correct order of magnitude to account for the negative and positive after-potentials in terms of potassium accumulation or depletion in the extracellular space.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge