English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammatory Bowel Diseases 2019-Oct

Prolyl Hydroxylase Inhibition Mitigates Pouchitis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jonathan Harnoss
Jasper Gebhardt
Praveen Radhakrishnan
Christine Leowardi
Julius Burmeister
Doug Halligan
Shuai Yuan
Kilian Kennel
Moritz Strowitzki
Anja Schaible

Keywords

Abstract

Pouchitis is the most common long-term complication after restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC) or familial adenomatous polyposis (FAP), which can eventually progress to pouch failure, necessitating permanent stoma construction. Hypoxia-inducible transcription factor prolyl hydroxylase-containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors that control adaptive gene expression through hypoxia-inducible factor (HIF). Emerging evidence supports PHDs as being therapeutic targets in intestinal inflammation. However, pharmacological inhibition of PHDs has not been validated as a treatment strategy in pouchitis.PHD1-3 mRNA and protein expression were analyzed in mucosal pouch and prepouch ileal patient biopsies. After establishment of a preclinical IPAA model in rats, the impact of the pan-PHD small-molecule inhibitor dimethyloxalylglycine (DMOG) on dextran sulfate sodium (DSS)-induced pouchitis was studied. Clinical and molecular parameters were investigated.PHD1, but not PHD2 or PHD3, was overexpressed in pouchitis in biopsies of patients with IPAA for UC but not FAP. In addition, PHD1 expression correlated with disease activity. DMOG treatment profoundly mitigated DSS-induced pouchitis in a rodent IPAA model. Mechanistically, DMOG restored intestinal epithelial barrier function by induction of tight junction proteins zona occludens-1 and claudin-1 and alleviation of intestinal epithelial cell apoptosis, thus attenuating pouch inflammation.Together, these results establish a strong therapeutic rationale for targeting PHD1 with small-molecule inhibitors in pouchitis after IPAA for UC.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge