English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2016-Oct

Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L A Balestrin
J Bidone
R C Bortolin
K Moresco
J C Moreira
H F Teixeira

Keywords

Abstract

Achyrocline satureioides is a medicinal plant widely used in South America that exhibits a well-documented antioxidant activity. Such activity has been related to their main aglycone flavonoids quercetin, luteolin, and 3-O-methylquercetin (3MQ). This study addresses the development of antioxidant hydrogels containing an A. satureioides extract-loaded nanoemulsions aimed at topical application. The systems investigated were A. satureioides extract-loaded nanoemulsions (ASNE) obtained by spontaneous emulsification procedure formulated in semisolid hydrogels composed of Carbopol® Ultrez 20 (HASNE). Hydrogels exhibit a non-Newtonian pseudoplastic behavior. A higher release of 3MQ from ASNE (3.61μg/cm(2)/h) was observed when compared with HASNE (2.83μg/cm(2)/h). Different parameters that may have an influence on the retention of flavonoids into the skin were investigated by using a Franz-type diffusion cells. Indeed, the amount of formulation applied on donor compartment was found to play a crucial role. At the optimized conditions, retention of approximately 2μg/cm(2) of flavonoids was detected into the skin. A higher retention of 3MQ was detected (approximately 1.0μg/cm(2)) in comparison with the other flavonoids. Finally, a protection the porcine ear skin by formulations, against oxidative stress generated by UVA/UVB light was demonstrated by means of TBARS, protein carbonylation, and protein thiol content assays. The overall results showed the potential of the formulations developed in this study for the prevention of oxidative stress on the skin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge