English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Methods in enzymology 2006

Purification of polyglutamine proteins.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Michelle K M Chow
Andrew M Ellisdon
Lisa D Cabrita
Stephen P Bottomley

Keywords

Abstract

The misfolding and formation of fibrillar-like aggregates by polyglutamine proteins is believed to be a key factor in the development of the neurodegenerative polyglutamine diseases; however, relatively little is known about structural and conformational aspects of polyglutamine-induced misfolding and aggregation. This is largely attributable to the fact that polyglutamine proteins have proved difficult to purify in quantities suitable for biochemical and biophysical analyses, thus limiting the extent to which the proteins can be conformationally characterized. Recent advances, however, have seen the development of a number of protocols enabling the expression and purification of these proteins in more significant quantities. In this report, we describe a purification protocol for ataxin-3, which, in its polyglutamine-expanded form, causes Machado-Joseph disease. Purification of different length ataxin-3 variants, including one of pathological length, is facilitated by an N-terminal hexa-histidine tag, which enables binding to a nickel-chelated agarose resin. A key issue that arose during purification was the undesirable proteolysis of ataxin-3 by a trace contaminant protease. We solved this problem by the addition of a benzamidine-binding step during purification, which greatly reduced the level of proteases present. We found that the inclusion of this step had a significant positive impact on the quality of the purified protein product. We also inactivated trace amounts of proteases during experiments by the addition of specific protease inhibitors. Finally, we also describe initial structural and functional analyses that confirm the integrity of the purified protein.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge