English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2006-Jan

Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
John Sleep
Alexandre Lewalle
David Smith

Keywords

Abstract

Myosin generates force by a rotation of its lever arm. Crystal structures of myosin II indicate an unloaded working stroke of 10-12 nm, a range confirmed by recent x-ray interference experiments. However, when an actin filament, held between two weakly, optically trapped beads is made to interact with a single head of skeletal myosin, the bead displacements have often been reported as having a mean value of 5-6 nm, a value that is commonly interpreted as the working stroke. In general, the observed displacement is not expected to be equal to the working stroke because the kinetics of the stroke is necessarily strain-dependent: this effect biases the frequency of binding events to different actin sites so that displacements smaller than the working stroke are preferentially selected. Our analysis is tailored to current trap experiments, in which the time resolution is insufficient to detect pre-rigor states. If the preceding transitions are in equilibrium, the mean displacement is zero, contrary to observations in the presence of ATP. However, under ATP-cycling conditions, we find that the mean displacement is deflated to 0.3-0.7 of the true working stroke, depending on the equilibrium constant of the stroke and the rate at which the first myosin product state can detach from actin. The primary working stroke of processive myosin motors as measured by optical trapping is similarly uncertain.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge